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This paper focuses on the development of a comprehensive analytical model for the conduc- 

t ion-dominated transient contact melting occurring on an isothermal surface, in which emphasis 

is placed on the treatment of an arbitrary strength of the external force. For a small Stefan 

number, the proposed model agrees reasonably not only with the exact solution for non-contact 

melting but also with the existing numerical data for close-contact melting. Normalization of the 

model equations with reference to the steady solution makes it possible to pick up a single 

coF~solidated parameter G, by which the constrained mehing processes can be effectively 

classified into three regimes : non-contact, intermediate and close-contact. Taking advantage of 

the approximate analytical solution available for close--contact melting, the value of demarca- 

tion between the regimes of intermediate and close-contact melting is found to be (5:= l0 a. It is 

also revealed for the first time that in the intermediate regime the contact melting,, system 

approaches the steady state passing through a damped oscillation. 
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Nomenclature  

A ",Contact area 

c :Specific heat 

erf : Error function 

F : External force normal to the surface 

I;: : Dimensionless external force, FL/( ,ua)  

G :.Consolidated parameter, Eq. (27) 

h,j  : Latent heat of fusion 

k : thermal conductivity 

L : 'Contact length 

M : Mass of the phase change material 

A~/ : Dimensionless mass, M / ( ( j L  2) 

m : Summation index 

p : Pressure 

Pr : Prandtl number, t~c/k 

Ste : Stefan number, c'z1T/h~,. 
T : Temperature 

Tm : Melting point of the phase change material 

A T  :Temperature difference 

I : r ime  
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/ : Dimensionless time, tg~/L z 

[ : Normalized time, Eq. (26) 

z:// : Dimensionless time step 

zt, v : Velocity components, Fig. 1 

V : Solid descending velocity 

17- : Dimensionless solid descending velocity, 

VL/  c~ 
1~ : Normalized solid descending velocity, 

9/9~. 
A]k ~ : Deviation of the normalized velocity 

x, y : Cartesian coordinates, Fig. I 

Greek characters 

3 
g 
O 

A~ 

/1 

p 

0 

: Thermal diffusion coefficient, k / ( p c )  
: Fihn thickness 

: Dimensionless film thickness, 3 / L  
Normalized film thickness, ~/c~,~ 

Devialion of the normalized thickness 

Dimensionless y, y / ~  
Coefficient, Eqs. (17) and (19) 

Viscosity 

Density 

Dimensionless temperature, 
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( T -  T~,)/AT 
: Dimensionless interracial temperature gra- 

dient, Eq. (16) 

Superscript 
o : The previous time step 

Subscripts 
app : Approximate solution 

N " Neumann solution 

s : Steady state 

1. Introduction 

Contact melting phenomena occur in numerous 

natural and technological processes (Moallemi et 

al., 1986). From the engineering viewpoint, the 

primary interests in contact melting are placed on 

high heat transfer rate and/or  low friction 

between two solid bodies concerned. In this con- 

nection, a great number of researches have been 

conducted for diverse geometric configurations, 

heating modes, contact conditions and types of 

relative motion between the mating solid surfaces, 

which have been systematically reviewed by Bejan 

(1994). 

Focusing our attention on close-contact melt- 

ing among the topics encompassed in the review, 

it is observed that most of the previous analytical 

studies have dealt with the quasi-steady process 

only. That is, the transient process undergone 

either from the initial direct contact to the steady 

melting or from one to another steady states of 

contact melting caused by a sudden change in the 

melting conditions has been excluded. This is 

possibly because the unsteady effect is small 

enough to be neglected, or because inclusion of it 

no longer allows the problem to be handled 

analytically, although the rationale for exclusion 

of it has never been reported yet. However, con- 

sidering that thorough understanding of time 

-dependent characteristics such as the duration of 

transition and variation patterns of the system 

variables is a prerequisite for justifying the quasi 

-steady assumption, the transient process needs to 

be addressed rigorously. Of course, the nature of 

transition itself is worthy of study in this area. 

Hong and Saito (1993) appear to be the first to 

investigate the initial transient process as a dis- 

tinct mechanism during close contact melting 

occurring between a phase change material and a 

heated flat surface. They numerically solved full 

-scale governing equations for the unsteady fluid 

flow and heat transfer through the liquid film 

from the onset to the steady state of melting. The 

simulated results are encouraging in that time 

evolutions of the system variables have been 

explicitly illustrated. Despite such an achieve- 

ment, this study still suffers from a shortage of 

effort for modeling the fundamental features of 

the transient process. In fact, their target was 

primarily directed at developing a numerical 

method for the moving boundary problem con- 

strained by an externally imposed contact force. 

Most recently, a remarkable progress in analytical 

modeling of close-contact melting has been 

accomplished by Yoo (1997). Based on a set of 

simplified model equations, he succeeded in deriv- 

ing an approximate analytical solution for the 

initial transient process of conduction-controlled 

close contact melting. The solution, though it is 

compactly expressed, seems to be capable of 

resolving almost all the effects of pertinent fac- 

tors. Strictly speaking, however, this solution is 

valid only when the inertial force due to the solid 

descending motion is negligible compared to the 

external force exerted on the solid block. 

If the melting processes were tentatively classi- 

fied by the strength of contact force acting 

between a phase change material and a heating 

surface, three generic regimes could emerge : non 

contact, intermediate and close contact. The first 

one, which is free completely from contact and 

inherently transient in nature, corresponds to the 

well-known Stefan problem, and the last one, in 

which the contact force is strong enough, has been 

surveyed above. In practice, the restriction 

imposed on Yoo's solution (1997) is equivalent 

to the condition of close-contact melting. The 

second one, where the contact force is relatively 

weak, may also be called contact melting in a 

rough sense. Contact melting under a micro- 

gravity or controlled external force environment 

belongs to this category. In this regime the inertial 
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force would be comparable to the external force. 

Nevertheless, neither an attempt to categorize the 

melting processes in such a manner, nor an inves- 

tigation on the intermediate regime has been 

published. 

As the first step to approach these challenging 

issues, the present study is intended to establish a 

characteristic parameter for reasonable classifica- 

tion and to analyze the melting behaviors compre- 

hensively including the intermediate regime. To 

these ends, an analytical model which can cover 

all the regimes of melting needs to be developed. 

Some simplifying assumptions are introduced to 

render tlhe model equations well-posed within the 

extent of the fundamental features of contact 

melting being kept. An appropriate normalization 

of the model equations facilitates to reach the 

present purposes. 

2. Modeling 

The physical system considered in the present 

study is a simple but representative configuration 

of contact melting (Bejan, 1995), as depicted 

schematically in Fig. I. This system is selected not 

only because it admits compact formulations, but 

because numerical data for comparison are also 

available (Hong and Saito, 1993). Initially a 

Fig. 1 Schematic of the contact melting system 
considered in the present study. 

block of phase change material kept at the melt- 

ing point, T~, lies on a flat surface, contacting 

directly with each other over the length, L, by a 

prescribed normal force, F .  Contact melting by 

its own weight of the solid block, i.e. by the 

gravity, treated in the previous studies (Moallemi 

et al., 1986 ; Hong and Saito, 1993 ; Yoo, 1997) 

is a special case of this model. At / = 0  the surface 

starts to be heated isothermally at a temperature, 

T,~+zJT,  which induces the block to melt. At the 

same time thin liquid film forms between two 

solid bodies by melting, and the melt flows 

toward the ends by the descending motion of the 

solid block, eventually being squeezed out 

through the end openings. Both the solid descend- 

ing velocity and the liquid film thickness vary 

with time until the steady state is attained, and 

remain constant thereafter, as far as the contact 

force acts. At the steady state the solid descending 

velocity coincides with the melting rate at the 

solid liquid interface. The present work traces 

such a transient process. Similar phenomena may 

also take place if the melting conditions are 

changed suddenly during a steady contact melt- 

ing. Noting that the only difference lies in the 

initial condition, the same framework of analysis 

can be applied for them. 

For simplicity of modelling, the: following 

assumptions are introduced : 

(a) Heat transfer across the liquid film is 

dominated by conduction. It is an established fact 

that the assumption holds for small Stefan num- 

bers (Hong and Saito, 1993 ; Bejan, 1994). Yoo 

et al. (1997) have recently shown that the feasible 

range was about Ste<0.1. 

(b) Melting occurs one-dimensional ly in the 

direction normal (transverse) to the surface, i.e. 

heat transfer in the longitudinal direction is 

absent. This is the case for conduct ion-dominated 

close-contact  melting (Bejan, 1989). Even in the 

presence of convection in the film, the assumption 

has already turned out to be valid (Hong and 

Saito, 1993 ; Yoo et al,, 1997). 

(c) The density of  the phase change material is 

constant, Although the sol id- l iquid density differ- 

ence affects the melting behaviors, it does not 

alter them substantially (Bejan, 1992 ; Yoo, 
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1997). Moreover, the effect can be incorporated in 

the present model without special difficulties if 

necessary. 

(d) The mass of the solid block is invariant 

throughout the transient process. In the normal 

contact melting the transient process is very short 

in comparison to the quasi steady process where 

most of the mass melts. Accordingly, the effect of 

mass variation during the transient process can be 

neglected (Hong and Saito, 1993). 

The target unknowns of the system, time evolu- 

tions of the solid descending velocity, V ( I ) ,  and 

the liquid film thickness, ~ ( l ) ,  are determined 

from the dynamic force balance principle and the 

energy balance at the sol id- l iquid interface. First, 

the vertical force balance relates the inertia of the 

descending solid with the pressure force devel- 

oped in the film and the external force exerted on 

the block, i.e. 

M ~ -  F - f A P d A  ( l)  

for which the assumption (d) has been applied. 

Note here that the inertia term on the LHS of Eq. 

( 1 ) has been neglected in the previous analyses of 

close--contact melting where the external force 

predominates over it (Moallemi et al., 1986 ; 

Yoo, 1997). In contrast, the term is retained in 

this work to include the aforementioned interme- 

diate regime. Next, the interracial energy balance 

under the assumption (b) is expressed as 

where the sum of the solid descending velocity 

and the growth rate of film thickness in the 

parenthesis on the RHS represents an instantane- 

ous melting rate. Thus we have derived a set of 

simultaneous ordinary differential equations for 

the system variables, V ( D  and 8 ( t ) ,  subject to 

the initial conditions, 

V(0) 8 ( 0 ) - 0  (3) 

It should be mentioned that Eq. (3) is valid only 

when the assumption (c) holds. Otherwise, V(0) 
could depend on the solid liquid density ratio 

(Yoo, 1997). 

For the closure of model equations, the pres- 

sure distribution in the liquid film and the tem- 

perature gradient at the melting front appeared in 

Eqs. (1) and (2), respectively, should be specified 

in terms of the system variables. This can be 

accomplished by solving the continuity, momen- 

tum and energy equations in the liquid film. 

Owing to the assumption (c), the continuity 

equation is simply 

o~x-. o~y u (4) 

According to the classical theory of  lubricat ion 
(Batchelor, 1967 ; Bejan, 1989), the l iquid inertia 

and the pressure variat ion in the transverse direc- 

t ion are negligible, so that the momentum equa- 

t ion is simplif ied as 

dP 8 ~ u 
& - / z  83,~ (5) 

Upon applying the assumptions (a) and (b), the 

energy equation reduces to 

8 T  c)2T (6) 
8t - ce 8y2 

In order to comprehend all the regimes of melt- 

ing, the unsteady term is retained in the energy 

equation. If we are interested in close contact 

melting only, the term can be legitimately 

dropped even for the transient analysis (Yoo, 

1997). 

Since the simplified continuity and momentum 

equations are identical with those for the steady 

analysis (Bejan, 1995 : Yoo et al., 1997), the 

solution procedure for fluid mechanics part is not 

repeated here, but the result only is presented. A 

parabolic velocity profile across the film, u (y) ,  is 

obtained from Eq. (5) and the no-sl ip boundary 

condi t ions ,  u ( 0 ) - - z t  (8) = 0. This prof i le  

together with the impermeable bottom and blow- 

ing interfacial conditions for the transversal veloc- 

ity component, v (0) = 0  and v (8) = V, enables 

Eq. (4) to be integrated from y = 0  to y = 8 .  Thus 

we have the following differential equation for 

the pressure distribution along the film : 

d2p 12/z V 
dx z .... 83 (7) 

Integrating Eq. (7) twice with the end conditions, 

p (0) = p (L) -- O, substituting the pressure distri- 
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bution into Eq. (1), and performing the integra- 

tion finally yield 

d V  

The energy equation, Eq. (6), subject to the 

initial and boundary conditions, 

7" (y, 0) = Tm (9) 

7"(0, t)=T=+AT" ; T ( &  t ) = T ~  (lO) 

respectively, does not allow an exact solution not 

only because one of the boundaries, i.e. the solid 

liquid interface, is unknown a priori, but 

because it is also coupled with the force balance. 

This obstacle can be circumvented by invoking an 

additional assumption that the instantaneous 

velocity of the interface is negligible, i.e. the 

growth rate of the film is very low, which will be 

justified later. Then there exists an approximate 

solution for this problem (Carslaw and Jaeger, 

1959; Yoo, 1997), 

6'= (l - r __2_ ~ ! e  . . . . . .  "~sin (m~r~') 
7"( m = l ;vK/ 

(ll) 

Applying the interfacial temperature gradient 

determined from Eq. (11) into Eq. (2), we have 

the following energy balance equation expressed 

in terms of the system variables 

3. V a l i d a t i o n  

So far, simplified but completed model equa- 

tions, Eqs. (8) and (12), describing the transient 

process of  contact melting have been developed. 

Now they are converted into convenient forms to 

be validated. Referring to the definitions given in 

Nomenclature and rearranging terms, we obtain 

the dimensionless system of model equations and 

boundary conditions, 

,:/~7 _ (pr./l~t. t) ( />_  lPg_3) (13) 
d t  

d 8  _ (Ste~b) g ~-- V (14) 
d t  

9(o)  = g(0) = 0  (15) 

The abbreviated term q5 in Eq. (14), which is 

defined as 

~= a0 1+2 ~. ( -  1)'e -,~~'~/a~ (16) 
r  U ~  m=l  

represents the dimensionless interracial tempera- 

ture gradient. 

It is important to validate the model equations 

prior to advancing to the main targets since not a 

few assumptions have been introduced during the 

formulation procedure. Two limiting cases, i.e. 

the regimes of non-contact  and close-contact 

melting, for which the exact solution and numeri- 

cal data are available, respectively, are considered 

for verification. 

In the non-contact  Stefan problem, there is no 

solid motion ( F =  V = 0 )  so that Eq. (13) is 

irrelevant to the system behaviors. The solid-l iq-  

uid interface in this case is free to move, whereas 

it is constrained by the external force in contact 

melting. Accordingly, the interracial velocity that 

has been neglected to derive Eq. (11) is highest in 

non-contact  melting. It is obvious that an error 

caused by the assumption should diminish sharp- 

ly with increasing contact force ( F ) .  That is, this 

limiting case provides an upper bound of the 

error for contact melting. The well-known 

Neumann solution indicates that the interface 

position moves according to g=2AN ~t/2, where 

the coefficient ,~N is the solution of the following 

transcendental equation : 

ANea~erf(AN) = Ste /a  -1/~ (17) 

On the other hand, the approximate interracial 

energy balance, Eq. (14), is rearranged as 

I d S  ~ = S t e [ l + 2 ~ , ( _ l ) m e  "'~i."'i~] 
2 d t  ~=~ 

(18) 

By taking 8--2A~pp ~'~Ja, Eq. (18) reduces to an 

algebraic equation for the coefficient ~>p 

A~pv=Ste[l q- 2 ~= ( -1 )me  ~'~J'4~ '] (19) 

Then the dimensionless interfacial temperature 

gradient q~, which directly affects the system 

behaviors in Eq. (14), can be expressed in terms 
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Table 1 Conditions of close-contact melting used 

for validation. 

Parameter Ste Pr M F G 

Value 0.01266 13.44 0.5 1.643)<10 n 4.030• 

Fig. 2 Comparison of the interracial temperature 
gradient between the approximate and exact 
solutions for the Stefan problem as a function 
of the Stefan number. 

of the coefficient 2 simply as ~bN=2/lZN/Ste and 

qS~pp--2A~pp/Ste, respectively. Variations of q~y, 

~b~p~, and the relative error between them with 

respect to the Stefan number are shown in Fig. 2. 

As Ste increases, qSN gradually decreases, while 

~bapp being kept nearly constant. Hence the dis- 

crepancy between them increases. Fortunately, the 

relative error for the conduction dominated 

range, i.e. Ste<0.1, remains within a tolerable 

limit (about 3.3 % or less). In view of the above 

discussion on non contacting melting, the funda- 

mental features of contact melting seem to be 

hardly affected by the assumption. An another 

meaningful result is that (,b~l for small Stes, 

which closely resembles the approximation of 

linear temperature profile across the liquid layer 

(Carslaw and Jaeger, 1959). This leads to the fact 

that ~b in conduction-dominated contact melting 

depends neither on time nor on Ste. 

In the regime of close contact melting, Hong 

and Saito (1993) presented two sets of simulated 

results for Ste=0.01266 and 1.266, respectively. 

Only the former is adopted here for comparison 

since the latter, in which the convection effect 

across the fihn was reported to be significant, is 

apparently out of the present scope. Listed in 

Table 1 are the specific melting conditions under 

the gravitational field in the present notation, 

where the last column is appended for later use. 

Meanwhile, the dimensionless model equation 

Fig. 3 Comparison of time evolutions of the liquid 
film thickness and solid descending velocity 
between the present results and available 
numerical data under the conditions of Table 
I. 

system, Eqs. (13) -- (15), should be solved by 

numerical means due to the inherent nonlinearity. 

Conventional ordinary differential equation 

solvers such as the predictor-corrector or Runger 

-Kutta method can not be employed for this work 

since the model equations involve the terms which 

are indefinite at l = 0  (Ferziger, 1981). There- 

fore, the backward-difference discretization is 

invoked, which results in the following simultane- 

ous nonlinear equations : 

(PrM -1) ( P -  9g-~)~ F - ( 9 -  9 o) =0 
(2O) 

I(SlecS) g 1 - -VIA/ [  ( a - a o ) = o  (21) 

where superscript o denotes the value at the 

previous time step. Using the Newton Raphson 

method, Eqs. (20) and (21) converge stably and 

efficiently. The calculated results, i.e. time evolu- 

tions of the solid descending velocity I7- and film 

thickness 5, are compared with those by the 

simulation in Fig. 3. Two set of results agree 

excellently with each other at all times. This fact 

together with the foregoing discussion on the 

St&an problem seems to suffice to validate the 

present model. 
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4. D i s c u s s i o n  

4.1 Normalization 
The nondimensionalized model equations, Eqs. 

(13) and (14), are cast in inconvenient forms to 

capture the fundamental features of contact melt- 

ing, although they are ready to be solved and 

compared. The quantities of interest such as time 

evolutions of the solid descending velocity and 

the film thickness should be repeatedly calculated 

for ,every combination of four dimensionless 

pararneters, Ste, Pr, fi" and 21~. In addition, a 

parameter for classifying the regime of melting 

processes is still uncertain. These issues can be 

judiciously overcome by normalizing the model 

equations with reference to the steady solution 

(Yoo, 1997). 

Since at the steady state all time derivative 

terms vanish, and qS=l in Eqs. (13) and (14), the 

steady solution is readily obtained as 

l?-~= (Ste3/~) ~'~ (22) 
a ~ =  (Ste/5 ')~,,4 (23) 

These are consistent with the previous steady 

analysis (Bejan, 1995 ; Yoo et al., 1997). Apply- 

ing Eqs. (22) and (23) into Eqs. (13) and (14), 

we obtain the following normalized equations : 

d V  = G ( l  9 g  -~) (24) 
d t  
dg  g ~_ 
d t ~ ~7 (25) 

where the normalized time f and a new parame- 

ter G are defined, respectively, as 

[ f Vs/ a.~ (26) 
G = Pr34-~Ste s'4Dt'4 (27) 

The term q5 can also be expressed as a function of 

the normalized quantities, i.e. 

q5=1+2~2. ( I )~e  ,,,~.~i./s,~,~:'l (28) 
m - 1  

Although it has already been verified that qS=-I, 

the term ~b is still retained in the model equations. 

If a better approximate solution instead of Eq. 

(11) could be obtained, the framework of this 

analysis would be used simply by replacing the 

term. 

In a strict sense, the steady solution, Eqs. (22) 

and (23), is meaningful only in the regime of 

close contact melting. In the non-contact  and 

intermediate regimes the melting process may not 

attain the steady state. However, the steady solu- 

tion in those regimes can be regarded simply as a 

certain reference quantity apart from its physical 

meaning since the model equations normalized by 

it describe the system characteristics more effec- 

tively. This argument is readily substantiated by 

the fact that they apparently inw)lve only two 

parameters, (; and Ste, in contrast to four in the 

dimensionless forms. Furthermore, ~ I all the 

time for Ste<0.1 as discussed, so that the melting 

behaviors are actually independent of Ste. Thus 

the normalized equations are characterized by a 

single parameter. Note here that the parameter G 

comprises all the melting conditions (in this sense 

it is termed the consolidated parameter here- 

alter). The consolidated parameter can take the 

place of the tentatively used contact force, and 

allows a more reasonable classification of the 

mehing regimes. Three regimes proposed earlier 

correspond to the cases of G 0, the intermedi- 

ate range of G and G ~ co, respectively, each of 

which is discussed below. 

4.2 Non-contact melting 
The regime of non-contact  melting, i.e. G --~ 0, 

physically comes from the case o f / ~ - - ,  0 and /o r  

3 ~  oD since Pr and Ste are finite (see Eq. 

(27)). In this regime Eq. (24) clegenerates to 

ril l /all=O, which yields l ] '=0  on applying the 
initial condition, ~?(0)=0.  Then Eq. (25) 

reduces to Eq. (18). The previous chapter 

appears to suffice for understanding of pertinent 

phenomena. 

4.3 Close-contact melting 
The other limiting case, i.e. G ~ c-o, which is 

materialized when [ 7~ is large enough, corresponds 

to the classical close-contact melting. The case of 

J14 .... 0 should be precluded in the light of the 

assumption (d) as well as the physical reality. 

Contact mehing due to the normal gravity 

belongs to this regime (see the value in the last 

column of Table I). 
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As described earlier, Yoo (1997) has obtained 

an approximate analytical solution for the tran- 

sient process of close-contact melting by neglect- 

ing the inertial force due to the solid descending 

motion in comparison to the external force. The 

solution procedure is briefly regenerated here to 

link it to the discussion on the feasible range of 

the consolidated parameter. Since the normalized 

solid descending acceleration, d V / d t ,  is finite 
and G--~ or, Eq. (24) is simplified as 

I d V  
- -  1 - -  17~ a-~0  (29)  

G d t  

Applying this result, i.e. V ~  ~a, and 95 1 into 

Eq. (25), the following ordinary differential 

equation for c~(t") is obtained : 

d~2 2(1-- ~4) (30) 
d t  

Equation (30) subject to the initial condition, cf 

(0) 0, is solved to yield 

~ ( t )  tanhl/2 (2 l )  (31) 

which together with Eq. (29) leads to 

I~( l - )  =tanh3/Z(2 t') (32) 

Figure 4 depicts typical results of the approximate 

solution, Eqs. (31) and (32). The curves explicit- 

ly delineate time evolutions of the system vari- 

ables from the beginning to the steady state of 

close-contact melting. Since validation and other 

aspects of this solution set have been thoroughly 

discussed by Yoo (1997), they are not repeated 

here. 

The approximate solution is valid for G--~ oo 

and Ste<0.1. The feasible range of the consoli- 

1.5 

1.0 

r 

0,5 

Z 

0.0 

Fig. 4 

~ , , , i  . . . . . . . . .  J . . . .  l l l l  

0.0 0.5 1.0 1.5 

Normal ized  Time,  

2.0 

> 
1.o 

Z 

0.0 
2.0 

Time evolutions of the normalized liquid 
film thickness and solid descending velocity 
by the approximate analytical solution for 
close-contact melting. 

dated parameter, i.e. the lower bound of G, can 

be specified through comparison between the 

approximate and exact (numerical) solutions of 

the model equations. Let the deviations in l~ and 

of the approximate solution from the numerical 

result be AI~ and A 3 ,  respectively. Variations of 

A V  and A g  for three values of G are plotted in 

Fig. 5, where all numerical calculations were 

performed for Ste=0.01 to assure 95--1. Apart  

from time evolution, both deviations decrease 

sharply with increasing G to negligible levels 

when G-103 .  This leads to the fact that G_>103 

is a roughly estimated feasible range of G for the 

approximate solution to be valid (or for 

maintaining close-contact melting). In this 

regard, the value of G listed in Table 1 falls safely 

within the feasible range as noted earlier. Worthy 

of  remark in the figure are the facts that IZ/17" I is 

greater than IAcfl, and that the maxima of them 

emerge at different times as clearly observable in 

the case of G - 1 0 .  The former is due to that the 

neglected term in Eq. (29), i.e. dg/d{, affects 1~ 

more seriously than g. On the other hand, the 

latter seems to originate from a certain phase 

difference between 3 and V, though it is obscure 

at this stage. In addition, z:/l~ and Ac~ for G - 1 0  

and 10 ~ vary oscillatorily with time, whereas 

those for G = 103 asymptotically decrease to zero 

after a small initial increase. Increases in devia- 

tions with decreasing G are evidently caused by 

that the approximation Eq. (29), is violated for 

small Gs. 

0.06 

/ '  '..,. _ ... . . . . . .  G = I 0  ] 
/ '. . . . . . . .  G = I 0 2  

0.03 /' " AI) [ G =  103 I 

~ o.oo ....... ~. ~1 . . . . . . .  "- . . . .  7 . ; : : 7  .::::r::: ...... 

"'t~ . . . . . .  ~:<:'." ............ 
it& 

-0.03 . . . . . . . .  I . . . . . . . . .  ~,, . . . . . . .  I . . . . . . . .  
0.0 0.5 1.0 1.5 2.0 

N o r m a l i z e d  T i m e ,  t" 

Fig. 5 Effect of the consolidated parameter on tim- 
ewise deviations in the normalized liquid 
film thickness and solid descending velocity 
between the approximate analytical and 
numerical solutions for Ste=0.01. 
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In order to support  the above arguments, varia- 

tions of numerical ly calculated d V / d [ / G  for 

each G of Fig. 5 are depicted in Fig. 6. Note that 

the term d V / d [ / G  physically represents the 

ratio of the inertia to external force. As can be 

expected, it increases remarkably as G decreases, 

while keeping similar variat ion patterns one 

another. It is very suggestive that time when the 

acceleration d-~/d[ is maximum (Fig. 6) is 

followed by that of  IAgl (Fig. 5). 

ing systems, respectively, in the light of time 

evolut ion of of. It is plausible here to deduce that 

the system variables behave oscillatorily in the 

intermediate regime. In fact, such oscil lations in 

both cf and I) have ever appeared partly, for 

example, in the case of G -  10 in Fig. 5. Referring 

to Fig. 4, the process of c lose-contact  melt ing 

seems to attain the steady state near [ = 1 . 5 ,  

which is also supported by d V / d / ~ 0  in Fig. 6. 

Then a negative value of z / l )  or z/~ at that time 

for G = I 0  in Fig. 5 implies that the actual 

4 . 4  T h e  i n t e r m e d i a t e  r e g i m e  

The intermediate range of the consolidated 6.0 

parameter, approximately 0 < ( ) < 1 0  :~ based on 
5.0 the foregoing discussion, is of  part icular interest , ~  

since it has never been investigated yet. As 

mentioned earlier, this regime encompasses con- .~ 4.0 
o 

tact melting under a microgravity or external '" 
3.0 

force controlled by a spring. Al though the magni- 

tude of the solid descending acceleration, dV/  
a l l ,  in this regime is smaller than that in close ~ 2.o 

O 
-contact  melting, it can not be neglected due to a Z 

1.0 
small G as shown in Fig. 6. Therefore, the nor- 

malized model equations,  Eqs. (24) and (25), no 0.0 

longer allow addit ional  simplifications, and 

should be solved by the numerical  method 

presented previously. Fig. 7 

From the mathematical  viewpoint,  the model 

equations can be considered to describe a non-  

linear dynamical  system. Supposing the consoli-  

/ 

p / 

. J  
f 

/ 
t 

- - - -  G = 0  
_ _ _  G = 1 0  -2 
. . . . . .  G=10 -I 
........... G=IO ~ 
- -  G = o o  

I I I I I l ~ t l ] l l l l l ~  I l l l  I , l l l l  I ~ l  l u l l  i , l [  I 

0.0 5.0 10.0 15.0 20.0 

Normalized Time, ~" 

Time evolutions of the normalized liquid 
film thickness at different values of the con- 
solidated parameter ['or S te-0 .0 l .  

dated parameter G represents a certain combined 2.0 . . . 

coefficient of stiffness and damping,  the l imiting I ]~-_-_--G-00_z]-- - -- G=0 

cases of G, i.e. ( ; - - ,  0 and G -~ oe, could be , 1 5 L ] . . . . . .  G= 10 -I ] . 
:~ " ~  I ........... a=10~ I 

regarded as monotonica l ly  diverging and converg- ~_~ I :'".. 1 - -  G= ~o ] 

0.15 o 1.0 ," " - - . . . .  

O . 1 0 ~ ' - G G - ~ I 0 i [  - ~ :i " 

'~.~d 0.00~176 Z i i  

-0.05 0.0 5.0 10.0 15.0 20.0 
0.0 0.5 1.0 1,5 2.0 

Normalized Time, t' Normalized Time, ~" 

Fig. 6 Effect of the consolidated parameter on tim- Fig. 8 Time evolutions of the normalized solid 
ewise variation of the inertia-to-external descending velocity at different values of tile 
force ratio for Ste=0.0l.  consolidated parameter for Ste=0.01. 
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(numerically calculated) V or g is already 

greater than unity, thereby approaching the steady 

state in a decreasing fashion. Note that in Fig. 4 

they vary monotonically with time. 

In order to examine the oscillatory behaviors 

more comprehensively, the numerical results for 

some selected values of the consolidated parame- 

ter are illustrated together with two limiting cases 

of (7 in Figs. 7 (for the thickness 3) and 8 (for 

the velocity !/),  for which Ste=0.01 was used as 

before. A pair of figures successfully delineate a 

global map of transient inciting processes. Oscilla- 

tions both in the film thickness and in the solid 

descending velocity are grasped explicitly, though 

they decay very rapidly with time. The amplitude 

and period of oscillation seem to be reduced as (; 

increases. This may be better understood by 

matching the external force acting on the solid 

block, pressure built up in the film and viscosity 

of the liquid (via Pr) to the excitation force, 

stiffness and damping coefficients. In this manner, 

non contact ( G ~  0) and close-contact ((7, 

--~ co) melting correspond to the undamped and 

overdamped systems having infinite/zero and 

zero/infinite periods/fl'equencies, respectively. 

Figure 9 illustrates enlarged and overlapped 

variation patterns of g and !]" during contact 

melting in the intermediate regime ( G - 1  and 2 

1.3 

1.2 
( D  

> l.l 

1.0 

0.9 

Fig. 9 

0.8 

' ' ' ' . . . . .  I ' ' ' ' ' ' ' ' ' 1  ' ' ' ' ' ' ' ' ' 

0.0 2.0 4.0 6.0 

Normalized Time, t" 
Oscillatory behaviors of the normalized liq- 
uid film thickness and solid descending 
velocity during the transient process of con- 
tact melting in the intermediate regime for Ste 

0.01. 

as representative cases). The oscillatory behaviors 

shown there can be interpreted physically as fol- 

lows. At the early stage of melting, the liquid film 

responds promptly to an almost infinitely high 

initial heat transfer rate so that it grows sharply, 

while the solid block moves downward very slow- 

ly because of a high film pressure resisting the 

motion. Since the pressure force decreases as the 

film thickens (see the second term on RHS of Eq. 

(8)), the external force begins to prevail in the 

dynamic force balance. Then the solid descending 

motion is enhanced, which in turn causes the 

liquid gap to be thinner, thereby raising the 

pressure there. The pressure rise yields a reduc- 

tion of the solid descending velocity. These types 

of alternating phenomena continue until the 

steady state. The oscillations are damped rapidly 

once the film thickness has exceeded a certain 

level because they were initiated primarily by the 

high (direct contact) heat transfer rate. in this 

context, found in Fig. 9 are the facts that there 

exists a phase difference between g and l~, and 

that it depends essentially on G. Here the previ- 

ous statement on the phase difference associated 

with Fig. 5 may be justified. Note also that the 

phase angle between the displacement and veloc- 

ity in a harmonic system is 7r/2. 

Finally, it is important to confirm whether or 

not the foregoing theoretically predicted phenom- 

ena actually occur. Considering that the film 

thickness is very thin, verification by means of an 

experiment would require the highest degree of 

care. Rather, a sophisticated simulation might 

accommodate it. 

5. Conclusions 

A simple analytical model for the conduction 

-dominated contact melting occurring between a 

phase change material kept at its melting point 

and an isothermally heated fiat surface has been 

proposed, which comprehends every type of the 

transient process regardless of the strength of 

contact force acting between two solids. The 

model equations basically consist of the dynamic 

force balance on the solid block and the energy 

balance at the solid liquid interface, for the clo- 
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sure of which the continuity, momentum and 

energy equations in the liquid film have been 

handled analytically. 

For the range of small Stefan number, move- 

ment of the solid liquid interface proved to affect 

the transient temperature profile so slightly as to 

be neglected within a tolerance even in non-con- 

tact metting where the growth rate of the film 

thickness is highest. In addition, the calculated 

time ew)lutions ot' the system variables agreed 

excellenlly with the existing numerical data for 

close-contact melting . These comparisons for 

two limiting cases lead to the conclusion that the 

present model has been developed properly and is 

capable of predicting the fundamental features of 

contact melting. 

Normalization of the model equations with 

reference to the steady solution has effectively 

demarcated the transient melting processes. The 

normalized equations depend on a single charac- 

teristic parameter G: which is termed the consoli- 

dated parameter after its nature. Hence the con- 

tact melling systems can be reasonably classified 

by this parameter into three regimes: non-contact, 

intermediate and close-contact. The small 

extreme of G, i.e. G - ,  0, designates non contact 

melting, which is identical with the well-known 

Stefan problem. On the other hand, the opposite 

extreme of G describes close contact melting. 

Based on the approximate analytical solution 

available in this regime, the feasible range of close 

contact melting could be specified as G~: 10 a. 

In the intermediate regime (O<G<lOa) ,  the 

contact melting system behaves similarly to a 

nonlinear dynamical system. Both the film thick- 

ness and the solid descending velocity oscillator- 

ily approach the steady state, while showing a 

phase difference between them and being damped 

rapidly with time. In view of the fact that both the 

amplitude and period in the film thickness as well 

as the solid descending velocity decrease with 

increasing G, it can be deduced that the regimes 

of non contacting and close contact melting cor- 

respond to an undamped system with infinite 

period and an overdamped system with zero 

period, respectively. However, these theoretically 

detected oscillatory behaviors in the intermediate 

regime need appropriate verifications by other 

means. 
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